Localization lemmas for the Bergman metric at plurisubharmonic peak points
نویسندگان
چکیده
منابع مشابه
On completeness of the Bergman metric and its subordinate metric.
It is proved that on any bounded domain in the complex Euclidean space C(n) the Bergman metric is always greater than or equal to the Carathéodory distance. This leads to a number of interesting consequences. Here two such consequences are given. (i) The Bergman metric is complete whenever the Carathéodory distance is complete on a bounded domain. (ii) The Weil-Petersson metric is not uniformly...
متن کاملThe Stability of the Bergman Kernel and the Geometry of the Bergman Metric
If D is a bounded open subset of C", the set H = {ƒ: D —> C| ƒ is holomorphic and SD\f\ 2 < +°°} is a separable infinite-dimensional Hubert space relative to the inner product <ƒ, g) = fDfg. The completeness of H can be seen from Cauchy integral estimates. Similar estimates show that for any p E D the functional ƒ H* ƒ(/?),ƒ£ H, is continuous. Thus there is a unique element KD(z, p) E f/ (as a ...
متن کاملCoincidence Points and Common Fixed Points for Expansive Type Mappings in $b$-Metric Spaces
The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in $b$-metric spaces. Finally, we investigate that the equivalence of one of these results in the context of cone $b$-metric spaces cannot be obtained by the techniques using scalarization function....
متن کاملGaussian Curvature of the Bergman Metric with Weighted Bergman Kernel on the Unit Disc
In the paper Gaussian curvature of Bergman metric on the unit disc and the dependence of this curvature on the weight function has been studied.
متن کاملThe Pseudohyperbolic Metric and Bergman Spaces in the Ball
The pseudohyperbolic metric is developed for the unit ball of Cn and is applied to a study of uniformly discrete sequences and Bergman spaces of holomorphic functions on the ball. The pseudohyperbolic metric plays an important role in the study of Bergman spaces over the unit disk. It is defined in terms of Möbius self-mappings of the disk. As is well known, these conformal automorphisms genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 2003
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000025538